

GTH: GitHub Traffic History

[image: Documentation Status]
 [https://gth.readthedocs.io/en/latest/?badge=latest]This project logs traffic history data for your GitHub repositories and can optionally parse through the data to gain useful insights, plot the data, and send automatic emails with recent trends. This project was inspired by a desire to save long-term traffic history of GitHub repositories to look for patterns that extend beyond the last 14 days (all you can currently see from a respository’s Insights page).

This project is broken down into several modules: requesting the traffic data, analyzing the logged traffic data, plotting the logged data, and automatically sending an email with recent history stats. These modules can be run independently. See the Run Instructions section for more information on this project’s intended modularity.

[image: example-daily-views]

Traffic Requester Module

This module uses the GitHub rest API [https://developer.github.com/v3/]
through PyGithub [https://github.com/PyGithub/PyGithub] to log traffic data for a user’s owner repositories and repositories to which the user has contributed. The output of this module is a csv file with the following traffic information for each repository.

	stars: number of stars

	forks: number of forks

	clones_2weeks: number of clones in the last 14 days

	clones_uniqeus_2weeks: number of unique clones in the last 14 days

	views_2weeks: number of views in the last 14 days

	views_uniques_2weeks: number of views in the last 2 weeks

	clones_daily: daily clone counts for the last 13 days

	clones_uniques_daily: daily unique clones for the last 13 days

	views_daily: daily view counts for the last 13 days

	views_uniques_daily: daily unique views for the last 13 days

	referrers_top_10: top referrers to the repository (beta)

	content_top_10: top content in the repository (beta)

Check out the Setting up the Traffic Requester Module [https://github.com/betaBison/gth/wiki/Setting-up-the-Traffic-Requester-Module] wiki page for more information about installing dependencies, setting up your GitHub authorization key, and stand-alone run instructions.

Analytics Module

This module parses through the latest raw data from the traffic requester module and concatenates new data to individual repository history logs. The first output of this module is a folder log/analytics/YYYY-MM-DD/ that contains analytics of the tracked repositories comparing the current metrics to the last time the analytics module was run. The comparative metrics the analytics module logs include:

	began_tracking: repositories that the user has newly created or to which the user has first contributed

	ended_tracking: repositories that have been deleted

	stars_change: additions or deletions of stars to repositories

	forks_change: additions or deletions of forks of repositories

The second output of this module is the log/repos/ directory. The analytics module creates a separate folder for each repository and concatenates the metrics from the traffic requester module into individual csv files.

Check out the Setting up the Analytics Module [https://github.com/betaBison/gth/wiki/Setting-up-the-Analytics-Module] wiki page for more information about installing dependencies and stand-alone run instructions.

Plotter Module

This module contains plotting functions for the analytics data. The plotter has functions for plotting daily metrics or the cummulative summation of metrics over the trackd history period. The plotter has functions for graphing all repositories together (e.g. the top 10 most-viewed repositories) or graphing the metrics for a single repository by itself. Some of the plotter functions also allow you to add a date filter for only plotting historical data after a specied date. Check out the Setting up the Plotter Module [https://github.com/betaBison/gth/wiki/Setting-up-the-Plotter-Module] wiki page for the list of dependencies and examples of the possible graph options.

Email Sender Module

This module combines the most recently logged analytics metrics and graphs created in the plotter module into an html message. The module then uses the Gmail API [https://developers.google.com/gmail/api/quickstart/python] to send the html message to a desired receiver. Check out the Setting up the Email Sender Module [https://github.com/betaBison/gth/wiki/Setting-up-the-Email-Sender-Module] wiki page for more information about installing dependencies, downloading Gmail authorization credentials, and stand-alone run instructions.

Run Instructions

This project was intended to be modular; however, the modules do have sequential dependencies on each other. The email sender module depends on metrics created by the analytics module and calls functions from the plotter module. The analytics module depends on traffic data obtained from the traffic requester module. Please go through the wiki page of each module that you would like to use to install needed dependencies or authorizations.

The provided main.py [https://github.com/betaBison/gth/blob/main/main.py] file shows a simple example of running all of the modules consecutively. This file can be run be executing python3 main.py in the project directory. You could also only run the traffic requester if you only want the raw data. You could also run the traffic requester weekly, but only run the analytics and email sender once a month. For complete traffic history coverage, the only requirement is that the traffic requester module must be run at least every 13 days (see Disclaimer #3).

I suggest implementing a cronjob to automatically run the provided code. Check out the Setting up a cronjob [https://github.com/betaBison/gth/wiki/Setting-up-a-cronjob] wiki page for examples of how to set up an appropraite cronjob.

If you use all modules, then you should end up with a file structure that looks similar to:

├── config/
│ ├── credentials.json # (opt: email_sender) Gmail credentials file
│ ├── email_token.pickle # (opt: email_sender) email token once you verify
│ └── settings.ini # settings file
├── lib/
│ ├── analytics.py # analytics module
│ ├── email_sender.py # email sender module
│ ├── plotter.py # plotter module
│ └── traffic_requester.py # traffic requester module
├── log/
│ ├── analytics
│ ├── YYYY-MM-DD/
│ ├── YYYY-MM-DD.json # comparative metrics created by the analytics module
│ ├── plot_1.png # (opt: email_sender) plots created with the email sender
│ ├── plot_2.png
│ └── ...
│ ├── YYYY-MM-DD/
│ ├── YYYY-MM-DD/
│ ├── ...
│ ├── plot_1.png # (opt: plotter) cummulative plots created by plotter module
│ ├── plot_2.png
│ └── ...
│ ├── raw/
│ ├── YYYY-MM-DD.csv # raw traffic history output by the traffic requester module
│ ├── YYYY-MM-DD.csv
│ └── ...
│ └── repos/ # repository metrics separated out by the analytics module
│ ├── your_repo_1/
│ ├── clones_2weeks.csv
│ ├── clones_daily.csv
│ ├── clones_uniques_2weeks.csv
│ ├── clones_uniques_daily.csv
│ ├── forks.csv
│ ├── stars.csv
│ ├── views_2weeks.csv
│ ├── views_daily.csv
│ ├── views_uniques_2weeks.csv
│ └── views_uniques_daily.csv
│ ├── plot_1.png # (opt: plotter) repo plots created with the plotter module
│ ├── plot_2.png
│ └── ...
│ ├── your_repo_2/
│ ├── your_repo_3/
│ └── ...
└── main.py # main example file

Disclaimers

	This project is optimized for readability and not optimized for runtime performance.

	This project was built and tested with Python3.

	To obtain continuous data history, run the traffic requester module at least every 13 days. Full clones and visitor information updates hourly, but referring sites and popular content sections only update daily. All traffic data uses UTC+0 timezone no matter where in the world you are [docs [https://docs.github.com/github/visualizing-repository-data-with-graphs/viewing-traffic-to-a-repository]]. To avoid saving partial data, the traffic requester throws out the current UTC day’s data, hence you’re only left with 13 days worth of data instead of the expected 14.

	If you like the idea of this project but want a nicer front end, check out lukasz-fiszer/github-traffic-stats [https://github.com/lukasz-fiszer/github-traffic-stats].

	If you find bugs or possible improvements, please create an issue or pull request.

Contents:

	Modules Documentation
	Traffic Requester Module

	Analytics Module

	Plotter Module

	Email Sender Module

Modules Documentation

Traffic Requester Module

	
class lib.traffic_requester.TrafficRequester(config, prefix='settings_standard', verbose=False)

	Bases: object

traffic requester initialization

	Parameters

	
	config (configparser file) – configuration file

	prefix (string) – name for log file

	verbose (bool) – print verbose debugging statements

	
get_history()

	requests traffic history for each repository

Then adds all information to the dataframe

	
get_repositories()

	api request for repositories

checks which repositories are owned by the user or to which
the user has contributed. Adds all of these repo names to
the dataframe.

	
log_data()

	save raw data to log file

	
run()

	main run function for traffic requester

Analytics Module

	
class lib.analytics.Analytics(prefix='settings_standard', verbose=False)

	Bases: object

analytics initialization

	Parameters

	
	prefix (string) – name for log file

	verbose (bool) – print verbose debugging statements

	
check_dirs()

	check and create directories

create log directories if they don’t yet exist and check
which raw logs need to be analyzed.

	Returns

	analytics_needed – the raw logs that do not yet have a corresponding analytics
directory

	Return type

	list

	
check_forks_change()

	Checks forks counts

checks whether the forks count has changed and appends any
changes to self.forks_change

	
check_stars_change()

	Checks start counts

checks whether the stars count has changed and appends any
changes to self.stars_change

	
check_tracking_change()

	check tracked repositories

checks which repositories are beginning to be tracked or have
stopped being tracked.

	
create_repo_dirs()

	create log directories if they don’t yet exist

	
full2dir(fullname)

	changes full repository name into a directory name

	Parameters

	fullname (string) – full repository name

	Returns

	dirname – new directory name

	Return type

	string

	
load_log()

	load_log file into dataframe

	
log_analytics()

	Logs the analytics to a json file

	
run()

	main run function for analytics

	
sort_raw_data()

	Sort through each of the main metrics for each repository

	
update_daily_metric(ri, col_name)

	update metrics that are daily

this function reads through
the old data and only adds new daily values

	Parameters

	
	ri (int) – row of dataframe to read from

	col_name (string) – column name and thus file name for the specific metric

	
update_nondaily_metric(ri, col_name)

	update nondaily metrics

update metrics that are not daily, this function simply
appends the newest value to the log file

	Parameters

	
	ri (int) – row of dataframe to read from

	col_name (string) – column name and thus file name for the specific metric

Plotter Module

	
class lib.plotter.Plotter(prefix='settings_standard')

	Bases: object

Plotter class.

	Parameters

	prefix (string) – name for log file

	
create_email_plots(date_cur, date_prev=None)

	create and save some plots for use in an email

	Parameters

	
	date_cur (string) – YYYY-MM-DD, date of current analytics file

	date_prev (string) – YYYY-MM-DD, date of previous analytics file

	Returns

	fig_paths – [string,string,…]) : list of strings of the
location of where each figure is saved

	Return type

	list

	
create_plots(verbose=False)

	create a bunch of plots as desired

	Parameters

	verbose (bool) – print verbose debugging statements

	
plot_daily_metrics(col_name, type='daily', top_num=None, date_filter=None)

	plot and daily metrics.

The plots get saved to default location if there is no date filter
implmented

	Parameters

	
	col_name (string) – name for filename and column name

	type (string) – either “cumsum” or “daily”. “cumsum” will plot
the cumulative sum of the column over time while “daily”
will plot the daily change over time

	top_num (int) – number of top repositories (according to
cumulative sum) to show in the graph. Repos with a
cumulative value of 0 will still not be plotted

	date_filter (string) – “YYYY-MM-DD”, all data after this date
(inclusive) will be plotted. None means all data will be
plotted

	Returns

	fig – new figure

	Return type

	matplotlib figure

	
plot_repo_metric(repo_dir, metric_name, type)

	plots individual repository metrics and saves the plots

	Parameters

	
	repo_dir (string) – filepath to the repository logs

	metric_name (string) – name for metric and column name

	type (string) – either “cumsum” or “daily”. “cumsum” will plot
the cumulative sum of the column over time while “daily”
will plot the daily change over time

	
save_and_close(fig, plt_file)

	saves and closes the figure

	Parameters

	
	fig (matplotlib fig) – figure object

	plt_file (string) – filepath for the figure

	
update_repo_plots(verbose=False)

	update all repo plots.

This function in particular takes a long
amount of time. You could not call this function if for some
reason you need to run this code faster

	Parameters

	verbose (bool) – print verbose debugging statements

Email Sender Module

	
class lib.email_sender.EmailSender(config, prefix, verbose=False)

	Bases: object

email sender initialization

	Parameters

	
	config (configparser file) – configuration file

	prefix (string) – name for log file

	verbose (bool) – print verbose debugging statements

	
build_html_message()

	Build HTML message

create the bulk of the html message by combing lots of strings
together that include tracked analytics and plots that were
created

	Returns

	msg – long string that contains the html message

	Return type

	string

	
build_service()

	builds gmail api service.

Code copied with minor edits from
https://developers.google.com/gmail/api/quickstart/python

	Returns

	service – gmail api service

	Return type

	gmail api

	
create_mixed_message(message_html)

	Create a message for an email.

Copied with edits from
https://developers.google.com/gmail/api/guides/sending
Also see this answer for how to add attachments
https://stackoverflow.com/questions/1633109/

	Parameters

	message_html (string) – html text message to be sent

	Returns

	msg_object – email object

	Return type

	base64url encoded email object

	
prep_attachments()

	Prepare attachements.

call the plotter function and correlate figure names with
the figures that were created

	
run()

	main run function for the email sender

	
send_message(service, user_id, message)

	Send an email message.

Copied with minor edits from
https://developers.google.com/gmail/api/guides/sending

	Parameters

	
	service (Gmail API service instance) – Authorized Gmail API

	user_id (string) – User’s email address. The special value
of “me” can be used to indicate the authenticated user.

	message (string) – Message to be sent.

	Returns

	message – the sent message

	Return type

	message object

 Python Module Index

 l |
 m

 		 	

 		
 l	

 	[image: -]
 	
 lib	

 	
 	
 lib.analytics	

 	
 	
 lib.email_sender	

 	
 	
 lib.plotter	

 	
 	
 lib.traffic_requester	

 		 	

 		
 m	

 	
 	
 main	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | L
 | M
 | P
 | R
 | S
 | T
 | U

A

 	
 	Analytics (class in lib.analytics)

B

 	
 	build_html_message() (lib.email_sender.EmailSender method)

 	
 	build_service() (lib.email_sender.EmailSender method)

C

 	
 	check_dirs() (lib.analytics.Analytics method)

 	check_forks_change() (lib.analytics.Analytics method)

 	check_stars_change() (lib.analytics.Analytics method)

 	check_tracking_change() (lib.analytics.Analytics method)

 	
 	create_email_plots() (lib.plotter.Plotter method)

 	create_mixed_message() (lib.email_sender.EmailSender method)

 	create_plots() (lib.plotter.Plotter method)

 	create_repo_dirs() (lib.analytics.Analytics method)

E

 	
 	EmailSender (class in lib.email_sender)

F

 	
 	full2dir() (lib.analytics.Analytics method)

G

 	
 	get_history() (lib.traffic_requester.TrafficRequester method)

 	
 	get_repositories() (lib.traffic_requester.TrafficRequester method)

L

 	
 	
 lib.analytics

 	module

 	
 lib.email_sender

 	module

 	
 lib.plotter

 	module

 	
 	
 lib.traffic_requester

 	module

 	load_log() (lib.analytics.Analytics method)

 	log_analytics() (lib.analytics.Analytics method)

 	log_data() (lib.traffic_requester.TrafficRequester method)

M

 	
 	
 main

 	module

 	main() (in module main)

 	
 module

 	lib.analytics

 	lib.email_sender

 	lib.plotter

 	lib.traffic_requester

 	main

P

 	
 	plot_daily_metrics() (lib.plotter.Plotter method)

 	plot_repo_metric() (lib.plotter.Plotter method)

 	
 	Plotter (class in lib.plotter)

 	prep_attachments() (lib.email_sender.EmailSender method)

R

 	
 	run() (lib.analytics.Analytics method)

 	(lib.email_sender.EmailSender method)

 	(lib.traffic_requester.TrafficRequester method)

S

 	
 	save_and_close() (lib.plotter.Plotter method)

 	
 	send_message() (lib.email_sender.EmailSender method)

 	sort_raw_data() (lib.analytics.Analytics method)

T

 	
 	TrafficRequester (class in lib.traffic_requester)

U

 	
 	update_daily_metric() (lib.analytics.Analytics method)

 	
 	update_nondaily_metric() (lib.analytics.Analytics method)

 	update_repo_plots() (lib.plotter.Plotter method)

GTH: GitHub Traffic History

[image: Documentation Status]
 [https://gth.readthedocs.io/en/latest/?badge=latest]This project logs traffic history data for your GitHub repositories and can optionally parse through the data to gain useful insights, plot the data, and send automatic emails with recent trends. This project was inspired by a desire to save long-term traffic history of GitHub repositories to look for patterns that extend beyond the last 14 days (all you can currently see from a respository’s Insights page).

This project is broken down into several modules: requesting the traffic data, analyzing the logged traffic data, plotting the logged data, and automatically sending an email with recent history stats. These modules can be run independently. See the Run Instructions section for more information on this project’s intended modularity.

[image: example-daily-views]

Traffic Requester Module

This module uses the GitHub rest API [https://developer.github.com/v3/]
through PyGithub [https://github.com/PyGithub/PyGithub] to log traffic data for a user’s owner repositories and repositories to which the user has contributed. The output of this module is a csv file with the following traffic information for each repository.

	stars: number of stars

	forks: number of forks

	clones_2weeks: number of clones in the last 14 days

	clones_uniqeus_2weeks: number of unique clones in the last 14 days

	views_2weeks: number of views in the last 14 days

	views_uniques_2weeks: number of views in the last 2 weeks

	clones_daily: daily clone counts for the last 13 days

	clones_uniques_daily: daily unique clones for the last 13 days

	views_daily: daily view counts for the last 13 days

	views_uniques_daily: daily unique views for the last 13 days

	referrers_top_10: top referrers to the repository (beta)

	content_top_10: top content in the repository (beta)

Check out the Setting up the Traffic Requester Module [https://github.com/betaBison/gth/wiki/Setting-up-the-Traffic-Requester-Module] wiki page for more information about installing dependencies, setting up your GitHub authorization key, and stand-alone run instructions.

Analytics Module

This module parses through the latest raw data from the traffic requester module and concatenates new data to individual repository history logs. The first output of this module is a folder log/analytics/YYYY-MM-DD/ that contains analytics of the tracked repositories comparing the current metrics to the last time the analytics module was run. The comparative metrics the analytics module logs include:

	began_tracking: repositories that the user has newly created or to which the user has first contributed

	ended_tracking: repositories that have been deleted

	stars_change: additions or deletions of stars to repositories

	forks_change: additions or deletions of forks of repositories

The second output of this module is the log/repos/ directory. The analytics module creates a separate folder for each repository and concatenates the metrics from the traffic requester module into individual csv files.

Check out the Setting up the Analytics Module [https://github.com/betaBison/gth/wiki/Setting-up-the-Analytics-Module] wiki page for more information about installing dependencies and stand-alone run instructions.

Plotter Module

This module contains plotting functions for the analytics data. The plotter has functions for plotting daily metrics or the cummulative summation of metrics over the trackd history period. The plotter has functions for graphing all repositories together (e.g. the top 10 most-viewed repositories) or graphing the metrics for a single repository by itself. Some of the plotter functions also allow you to add a date filter for only plotting historical data after a specied date. Check out the Setting up the Plotter Module [https://github.com/betaBison/gth/wiki/Setting-up-the-Plotter-Module] wiki page for the list of dependencies and examples of the possible graph options.

Email Sender Module

This module combines the most recently logged analytics metrics and graphs created in the plotter module into an html message. The module then uses the Gmail API [https://developers.google.com/gmail/api/quickstart/python] to send the html message to a desired receiver. Check out the Setting up the Email Sender Module [https://github.com/betaBison/gth/wiki/Setting-up-the-Email-Sender-Module] wiki page for more information about installing dependencies, downloading Gmail authorization credentials, and stand-alone run instructions.

Run Instructions

This project was intended to be modular; however, the modules do have sequential dependencies on each other. The email sender module depends on metrics created by the analytics module and calls functions from the plotter module. The analytics module depends on traffic data obtained from the traffic requester module. Please go through the wiki page of each module that you would like to use to install needed dependencies or authorizations.

The provided main.py [https://github.com/betaBison/gth/blob/main/main.py] file shows a simple example of running all of the modules consecutively. This file can be run be executing python3 main.py in the project directory. You could also only run the traffic requester if you only want the raw data. You could also run the traffic requester weekly, but only run the analytics and email sender once a month. For complete traffic history coverage, the only requirement is that the traffic requester module must be run at least every 13 days (see Disclaimer #3).

I suggest implementing a cronjob to automatically run the provided code. Check out the Setting up a cronjob [https://github.com/betaBison/gth/wiki/Setting-up-a-cronjob] wiki page for examples of how to set up an appropraite cronjob.

If you use all modules, then you should end up with a file structure that looks similar to:

├── config/
│ ├── credentials.json # (opt: email_sender) Gmail credentials file
│ ├── email_token.pickle # (opt: email_sender) email token once you verify
│ └── settings.ini # settings file
├── lib/
│ ├── analytics.py # analytics module
│ ├── email_sender.py # email sender module
│ ├── plotter.py # plotter module
│ └── traffic_requester.py # traffic requester module
├── log/
│ ├── analytics
│ ├── YYYY-MM-DD/
│ ├── YYYY-MM-DD.json # comparative metrics created by the analytics module
│ ├── plot_1.png # (opt: email_sender) plots created with the email sender
│ ├── plot_2.png
│ └── ...
│ ├── YYYY-MM-DD/
│ ├── YYYY-MM-DD/
│ ├── ...
│ ├── plot_1.png # (opt: plotter) cummulative plots created by plotter module
│ ├── plot_2.png
│ └── ...
│ ├── raw/
│ ├── YYYY-MM-DD.csv # raw traffic history output by the traffic requester module
│ ├── YYYY-MM-DD.csv
│ └── ...
│ └── repos/ # repository metrics separated out by the analytics module
│ ├── your_repo_1/
│ ├── clones_2weeks.csv
│ ├── clones_daily.csv
│ ├── clones_uniques_2weeks.csv
│ ├── clones_uniques_daily.csv
│ ├── forks.csv
│ ├── stars.csv
│ ├── views_2weeks.csv
│ ├── views_daily.csv
│ ├── views_uniques_2weeks.csv
│ └── views_uniques_daily.csv
│ ├── plot_1.png # (opt: plotter) repo plots created with the plotter module
│ ├── plot_2.png
│ └── ...
│ ├── your_repo_2/
│ ├── your_repo_3/
│ └── ...
└── main.py # main example file

Disclaimers

	This project is optimized for readability and not optimized for runtime performance.

	This project was built and tested with Python3.

	To obtain continuous data history, run the traffic requester module at least every 13 days. Full clones and visitor information updates hourly, but referring sites and popular content sections only update daily. All traffic data uses UTC+0 timezone no matter where in the world you are [docs [https://docs.github.com/github/visualizing-repository-data-with-graphs/viewing-traffic-to-a-repository]]. To avoid saving partial data, the traffic requester throws out the current UTC day’s data, hence you’re only left with 13 days worth of data instead of the expected 14.

	If you like the idea of this project but want a nicer front end, check out lukasz-fiszer/github-traffic-stats [https://github.com/lukasz-fiszer/github-traffic-stats].

	If you find bugs or possible improvements, please create an issue or pull request.

Main Example

	
main.main()

	

gth

	Modules Documentation
	Traffic Requester Module

	Analytics Module

	Plotter Module

	Email Sender Module

	Main Example

 nav.xhtml

 Table of Contents

 		
 GTH: GitHub Traffic History

 		
 Modules Documentation

 		
 Traffic Requester Module

 		
 Analytics Module

 		
 Plotter Module

 		
 Email Sender Module

_static/minus.png

_static/plus.png

_static/file.png

_images/cumulative_views_daily.png
cumulative views_daily over time

160 —— betaBison-private-repo
—— betaBison-new-repo

140 —— betaBison-gth

120 —— org-project-repo
—— org-docs-repo

100 —— betaBison-repo-name

80

60

40

20

0

2
%o, 2 '\
25
29
20,

2
%o, 2
2
2
%o, 2
s
2
%o, 2
09
o,
<o,
25
N
2
%o, 2
2>

o,
4,
o,
<o,

